ICS supports cryo-electron microscope research
Posted on November 6, 2017UNIVERSITY PARK, Pa. — A new cryo-electron microscope, cryo-EM, that is also a spectrometer will bring life science methods together with materials science practices together to improve both fields and share methods across disciplines. The Institute for CyberScience (ICS) supports this instrument by facilitating the transfer, offloading, and storage of the data it produces.
“The FE1 Titan/Krios transmission electron microscope (TEM) operates at about -320 degrees Fahrenheit using liquid nitrogen. It is built to order and has a novel configuration that is the first of its type in the world,” said Nigel Deighton, director of research instrumentation, Huck Institutes of the Life Sciences, Penn State. “It was built, not just for the usual user, which is a life scientist, but it enables spectroscopy as well.”
Spectrographs look at the interaction of electromagnetic energy — infra-red, optical, ultraviolet or X-ray — with compounds and elements in materials. Cryo-EM looks at frozen samples and can see structures down to the atomic level. This method can produce 3-D images of biological molecules like DNA, proteins and viruses.
“We are proud to be making this significant investment to further the convergence of the physical and life sciences at Penn State,” said Neil Sharkey, vice president for research. “Part of what pushes our research to the forefront is the ability for teams to collaborate and integrate knowledge and techniques across disciplines, continually learning from each other in both formal team settings and casual discussions. Our state-of-the-art instrumentation facilities in the Millennium Science Complex are themselves designed to support this dynamic kind of teamwork. The new Krios TEM adds to these capabilities and opens a whole a whole new realm of investigational possibilities.”
Biologists, materials scientists and other researchers around Penn State and from outside the University will be able to use this new addition to the trove of common equipment available at Penn State.
“I want to understand viruses better and I study virus entry into the cell,” said Susan Hafenstein, director of the cryo-EM facility, and associate professor of biochemistry and molecular biology and associate professor of medicine. “If we could stop entry, we can defeat them.”
Hafenstein studies picornaviruses which have RNA genes so that every time they multiply they have mutations. This makes it hard to create vaccines and treatments because standard approaches are aiming at moving targets. If researchers can find parts of the virus that will not tolerate mutations, vaccines could target that part and be successful in preventing the diseases caused by these viruses.
“It is unusual to put a spectrometer on a life science microscope, but they have been used in materials science for a long time and enhance microscopic imaging with chemical information,” said Bernd C. Kabius, senior scientist in the Materials Research Institute. “Using the instrument in scanning mode also can give element-specific contrast, separating lighter from heavier elements. There are a whole suite of materials science tools and methods we can use on tissue samples. There are also life science tools helpful for materials science, such as minimizing radiation damage.”
While life scientists are looking forward to using this new microscope’s spectrographic abilities, materials scientists are looking forward to exploring potential uses of the cryomicroscope in their work.
“The trend in materials science in the last one to two decades has been toward soft matter, nanoparticles and functionalizing bio-molecules for microelectronic applications,” said Kabius. “These novel materials are as difficult to image as biological objects, which is why we now need the tools, which have been developed for the life sciences. Fifty years ago materials science was all hard materials, metals and ceramics. That has changed and is still changing. Now the emphasis is on soft materials like polymers and combinations of semiconductors with complex molecules for technological applications. Understanding catalytic reactions requires knowledge of the dynamic processes at surfaces in liquid environments, which are impossible to access with conventional methods. Cryo-EM can help by ‘freezing’ in intermediate states of these chemical reactions.”
While materials science has a tool chest for hard materials, the life sciences already have a tool chest for soft and liquid materials.
Kabius suggests that these softer materials can be used for microelectronics applications and TV screens that roll up and travel. Other types of materials that could benefit from the microscope include catalysts and materials interfaces.
Regardless of the substance to be scanned, the samples need preparation. They are prepared in thin sections and go into the microscope frozen. The microscope has a feeder device to automate sample insertion.
This article has been modified to clarify the role of ICS in supporting cryo-EM. Read the original here: http://news.psu.edu/story/492303/2017/11/06/research/cryo-electron-microscope-bring-life-sciences-and-materials-sciences
Share
Related Posts
- Featured Researcher: Nick Tusay
- Multi-institutional team to use AI to evaluate social, behavioral science claims
- NSF invests in cyberinfrastructure institute to harness cosmic data
- Center for Immersive Experiences set to debut, serving researchers and students
- Distant Suns, Distant Worlds
- CyberScience Seminar: Researcher to discuss how AI can help people avoid adverse drug interactions
- AI could offer warnings about serious side effects of drug-drug interactions
- Taking RTKI drugs during radiotherapy may not aid survival, worsens side effects
- Cost-effective cloud research computing options now available for researchers
- Costs of natural disasters are increasing at the high end
- Model helps choose wind farm locations, predicts output
- Virus may jump species through ‘rock-and-roll’ motion with receptors
- Researchers seek to revolutionize catalyst design with machine learning
- Resilient Resumes team places third in Nittany AI Challenge
- ‘AI in Action’: Machine learning may help scientists explore deep sleep
- Clickbait Secrets Exposed! Humans and AI team up to improve clickbait detection
- Focusing computational power for more accurate, efficient weather forecasts
- How many Earth-like planets are around sun-like stars?
- Professor receives NSF grant to model cell disorder in heart
- SMH! Brains trained on e-devices may struggle to understand scientific info
- Whole genome sequencing may help officials get a handle on disease outbreaks
- New tool could reduce security analysts’ workloads by automating data triage
- Careful analysis of volcano’s plumbing system may give tips on pending eruptions
- Reducing farm greenhouse gas emissions may plant the seed for a cooler planet
- Using artificial intelligence to detect discrimination
- Four ways scholars say we can cut the chances of nasty satellite data surprises
- Game theory shows why stigmatization may not make sense in modern society
- Older adults can serve communities as engines of everyday innovation
- Pig-Pen effect: Mixing skin oil and ozone can produce a personal pollution cloud
- Researchers find genes that could help create more resilient chickens
- Despite dire predictions, levels of social support remain steady in the U.S.
- For many, friends and family, not doctors, serve as a gateway to opioid misuse
- New algorithm may help people store more pictures, share videos faster
- Head named for Ken and Mary Alice Lindquist Department of Nuclear Engineering
- Scientific evidence boosts action for activists, decreases action for scientists
- People explore options, then selectively represent good options to make difficult decisions
- Map reveals that lynching extended far beyond the deep South
- Gravitational forces in protoplanetary disks push super-Earths close to stars
- Supercomputer cluster donation helps turn high school class into climate science research lab
- Believing machines can out-do people may fuel acceptance of self-driving cars
- People more likely to trust machines than humans with their private info
- IBM donates system to Penn State to advance AI research
- ICS Seed Grants to power projects that use AI, machine learning for common good
- Penn State Berks team advances to MVP Phase of Nittany AI Challenge
- Creepy computers or people partners? Working to make AI that enhances humanity
- Sky is clearing for using AI to probe weather variability
- ‘AI will see you now’: Panel to discuss the AI revolution in health and medicine
- Privacy law scholars must address potential for nasty satellite data surprises
- Researchers take aim at hackers trying to attack high-value AI models
- Girls, economically disadvantaged less likely to get parental urging to study computers
- Seed grants awarded to projects using Twitter data
- Researchers find features that shape mechanical force during protein synthesis
- A peek at living room decor suggests how decorations vary around the world
- Interactive websites may cause antismoking messages to backfire
- Changing how government assesses risk may ease fallout from extreme financial events
- ICS co-sponsors Health, Environment Seed Grant Program
- ICS Affiliate named AGU fellow
- Differences in genes’ geographic origin influence mitochondrial function
- Penn State’s Leadership in AI Research