Researchers develop sensors that detect human biomarkers and toxic gas
Posted on November 5, 2020UNIVERSITY PARK, Pa. — A new understanding of nanomaterials, sensor design and fabrication approaches could help advance stretchable, wearable gas sensors that monitor gaseous biomarkers in humans and toxic gas in an exposed environment, according to Penn State researchers.
Led by Huanyu “Larry” Cheng, Dorothy Quiggle Career Development Professor in the Penn State Department of Engineering Science and Mechanics, the research team recently published a review of the current state of gas-detecting stretchable sensors in Trends in Analytical Chemistry.
Recent developments in gas-sensing technologies have made it possible to detect gaseous biomarkers in humans by monitoring the metabolic process through exhaled breath or skin perspiration and detect harmful or toxic gases in humans’ surrounding environment. Human motions that significantly stretch the skin can degrade or deform the sensors, making it unable to detect gases accurately. To make a more resilient sensor, Cheng and his team investigated the most effective sensor fabrication methods that could work for a variety of applications.
“With recent developments in breath analysis, we are starting to build momentum toward developing a gas sensor that could have a larger platform of applications,” Cheng said.
According to Cheng, the gas sensors can help provide an earlier medical diagnosis by detecting volatile organic compounds (VOCs) from human breath, which may indicate the presence of several diseases, including amoebic dysentery, intestinal bacterial infections and cancer. Previous sensors could only monitor glucose and pH levels.
“From human skin perspiration and the exhaled breath, we have about 2,600 biomarkers in the gas form,” Cheng said. “This gives us vital information that we can leverage in the development of disease diagnostics.”
In addition to monitoring these biomarkers, the sensors can detect dangerous levels of toxic gases that may be present in a human’s surrounding environment. For example, the sensors could detect dangerous levels of methane in coal mines and potentially monitor the health and safety of coal miners.
Current gas sensors exhibit similar characteristics to the versions the team is studying, but they have flaws, according to Cheng. For example, metal oxide-based gas sensors have high working temperatures, making them too hot for people to wear. By improving how current gas sensors are fabricated, Cheng said he plans to develop a more reliable and safer gas sensor.
The researchers are specifically interested in a novel platform that directly integrates laser-induced graphene (LIG) via a simple laser scribing process. According to Cheng, this is a cost-effective way to develop a more sensitive, more selective sensor capable of quickly detecting VOCs and harmful gas at ultra-low levels.
LIG is highly porous and can be integrated with carbon-based or metal oxide nanomaterials, which are highly sensitive to gases. Cheng’s platform consists of LIG laser scribed on a film that is transferred to a soft substrate and coated with conductive metal to reduce its resistance. Because of the reduced resistance created through this method, the sensor can easily induce self-heating. The mixed metal oxide integrated with the novel LIG gas-sensing platform makes its workable temperatures significantly lower than the former metal oxide-based gas sensor.
Cheng and his colleagues are also studying how the shapes of composite materials comprising wearable, stretchable gas sensors can affect their environmental sensing performance.
“Though a variety of nanomaterials have been applied for stretchable gas sensors, there is still a wide range of gas-sensitive nanomaterials commonly used in rigid gas sensors that are not explored in their stretchable counterparts,” Cheng said. “We are very interested in exploring these new nanomaterials to provide distinct selectivity, high sensitivity, fast responses and wide detection limits for a new class of stretchable gas sensors.”
The paper was co-authored by Ning Yi, graduate student in materials science and engineering; Mingzhou Shen, graduate student in engineering science and mechanics; and Daniel Erdely, senior engineering science and mechanics student.
Support for this work was provided by the National Science Foundation; the American Chemical Society Petroleum Research Fund; and the National Heart, Lung and Blood Institute of the National Institutes of Health.
Share
Related Posts
- Featured Researcher: Nick Tusay
- Multi-institutional team to use AI to evaluate social, behavioral science claims
- NSF invests in cyberinfrastructure institute to harness cosmic data
- Center for Immersive Experiences set to debut, serving researchers and students
- Distant Suns, Distant Worlds
- CyberScience Seminar: Researcher to discuss how AI can help people avoid adverse drug interactions
- AI could offer warnings about serious side effects of drug-drug interactions
- Taking RTKI drugs during radiotherapy may not aid survival, worsens side effects
- Cost-effective cloud research computing options now available for researchers
- Costs of natural disasters are increasing at the high end
- Model helps choose wind farm locations, predicts output
- Virus may jump species through ‘rock-and-roll’ motion with receptors
- Researchers seek to revolutionize catalyst design with machine learning
- Resilient Resumes team places third in Nittany AI Challenge
- ‘AI in Action’: Machine learning may help scientists explore deep sleep
- Clickbait Secrets Exposed! Humans and AI team up to improve clickbait detection
- Focusing computational power for more accurate, efficient weather forecasts
- How many Earth-like planets are around sun-like stars?
- Professor receives NSF grant to model cell disorder in heart
- SMH! Brains trained on e-devices may struggle to understand scientific info
- Whole genome sequencing may help officials get a handle on disease outbreaks
- New tool could reduce security analysts’ workloads by automating data triage
- Careful analysis of volcano’s plumbing system may give tips on pending eruptions
- Reducing farm greenhouse gas emissions may plant the seed for a cooler planet
- Using artificial intelligence to detect discrimination
- Four ways scholars say we can cut the chances of nasty satellite data surprises
- Game theory shows why stigmatization may not make sense in modern society
- Older adults can serve communities as engines of everyday innovation
- Pig-Pen effect: Mixing skin oil and ozone can produce a personal pollution cloud
- Researchers find genes that could help create more resilient chickens
- Despite dire predictions, levels of social support remain steady in the U.S.
- For many, friends and family, not doctors, serve as a gateway to opioid misuse
- New algorithm may help people store more pictures, share videos faster
- Head named for Ken and Mary Alice Lindquist Department of Nuclear Engineering
- Scientific evidence boosts action for activists, decreases action for scientists
- People explore options, then selectively represent good options to make difficult decisions
- Map reveals that lynching extended far beyond the deep South
- Gravitational forces in protoplanetary disks push super-Earths close to stars
- Supercomputer cluster donation helps turn high school class into climate science research lab
- Believing machines can out-do people may fuel acceptance of self-driving cars
- People more likely to trust machines than humans with their private info
- IBM donates system to Penn State to advance AI research
- ICS Seed Grants to power projects that use AI, machine learning for common good
- Penn State Berks team advances to MVP Phase of Nittany AI Challenge
- Creepy computers or people partners? Working to make AI that enhances humanity
- Sky is clearing for using AI to probe weather variability
- ‘AI will see you now’: Panel to discuss the AI revolution in health and medicine
- Privacy law scholars must address potential for nasty satellite data surprises
- Researchers take aim at hackers trying to attack high-value AI models
- Girls, economically disadvantaged less likely to get parental urging to study computers
- Seed grants awarded to projects using Twitter data
- Researchers find features that shape mechanical force during protein synthesis
- A peek at living room decor suggests how decorations vary around the world
- Interactive websites may cause antismoking messages to backfire
- Changing how government assesses risk may ease fallout from extreme financial events
- Symposium at U.S. Capitol seeks solutions to election security
- ICS co-sponsors Health, Environment Seed Grant Program
- ICS Affiliate named AGU fellow
- Differences in genes’ geographic origin influence mitochondrial function