Researchers to study genetic roots of Parkinson’s Disease with NSF grant
Posted on April 10, 2019by Miranda Buckheit. Story originally published on Penn State News
UNIVERSITY PARK, Pa. — A pair of Penn State professors will be conducting research in a study funded by the National Science Foundation (NSF) to combine different sources of information to more efficiently identify genes involved in disease progression. Ultimately, discovering genetic modifiers of disease in the human genome may help to further precision medicine.
Benjamin Shaby, assistant professor of statistics and Penn State Institute for CyberScience faculty co-hire, and Daisy Philtron, assistant research professor of statistics, have received funding for a collaborative grant with a lab at University of California, San Francisco. The total amount for the award is $1 million, and Penn State is receiving $250,000.
“Genetics can play a key role in understanding the causes of and developing treatments for some diseases,” Shaby said. “Studying a single type of genetic information usually results in very poor ability to detect weak signals. We will develop new models that can study several types of genetic information simultaneously. “
The duo hope that combining different sources of information will enhance their ability to identify genetic modifiers. For example, genome wide association studies (GWAS) take the entire coding region of the DNA of study participants who have a particular phenotype or disease and compare that with the DNA of control participants.
This approach has had some success; however, genetic variants identified through GWAS approaches usually explain only a small fraction of their known heritability and have yielded a poor record of finding disease-causing variants.
The researchers will use Parkinson’s disease as their model disease, but the tools they develop will be applicable to any heritable complex phenotype.
Shaby and Philtron’s project aims to develop tools to combine GWAS with other sources of data, such as family-based genetic studies that identify important heritable variants and transcriptomic studies that measure differences in gene expression, to find genetic modifiers that could be missed using GWAS alone.
They will use Parkinson’s disease as their model disease, but the tools they develop will be applicable to any heritable complex phenotype.
The project will identify these genes by combining information across different experimental types using statistical tools called hierarchical models. Their models hypothesize that each gene in a person’s genome belongs to one of three groups: a “null group” that is not associated with disease progression; a “deleterious group” that is associated with negative disease outcomes; or a “beneficial group” that is associated with positive disease outcomes. The members of each group will tend to influence the various types of experimental measurements in similar ways.
The three-group structure has two key features. First, unlike traditional methods, it automatically accounts for multiplicity, which means that the results remain valid even though thousands of genes are being analyzed simultaneously. Second, it allows the information to be shared across various kinds of experiments, meaning that the results of the different experiments are mutually reinforcing.
Taken together, these two features have the potential to result in enhanced power to detect weak signals and, at the same time, produce few false positive results. Furthermore, the modular structure of the model design means that it would easily accommodate future types of experimental outcomes, should they become available.
This project, titled “Combining Heterogeneous Data Sources to Identify Genetic Modifiers of Diseases,” will span five years. Shaby and Philtron will fit their statistical models using computationally-intensive algorithms called Markov chain Monte Carlo, using data that comes with stringent privacy and security requirements. To make this possible, they will utilize the ICS Advanced CyberInfrastructure, Penn State’s supercomputer.
“Our goal is to develop powerful, generalizable tools to help identify which genes play a role in disease development,” Shaby said. “This project will hopefully lead to further understanding of the biological basis of Parkinson’s disease and potentially to therapeutic targets for drug development. These tools will also be useful for other researchers who are studying other heritable diseases.”
Share
Related Posts
- Featured Researcher: Nick Tusay
- Multi-institutional team to use AI to evaluate social, behavioral science claims
- NSF invests in cyberinfrastructure institute to harness cosmic data
- Center for Immersive Experiences set to debut, serving researchers and students
- Distant Suns, Distant Worlds
- CyberScience Seminar: Researcher to discuss how AI can help people avoid adverse drug interactions
- AI could offer warnings about serious side effects of drug-drug interactions
- Taking RTKI drugs during radiotherapy may not aid survival, worsens side effects
- Cost-effective cloud research computing options now available for researchers
- Costs of natural disasters are increasing at the high end
- Model helps choose wind farm locations, predicts output
- Virus may jump species through ‘rock-and-roll’ motion with receptors
- Researchers seek to revolutionize catalyst design with machine learning
- Resilient Resumes team places third in Nittany AI Challenge
- ‘AI in Action’: Machine learning may help scientists explore deep sleep
- Clickbait Secrets Exposed! Humans and AI team up to improve clickbait detection
- Focusing computational power for more accurate, efficient weather forecasts
- How many Earth-like planets are around sun-like stars?
- Professor receives NSF grant to model cell disorder in heart
- SMH! Brains trained on e-devices may struggle to understand scientific info
- Whole genome sequencing may help officials get a handle on disease outbreaks
- New tool could reduce security analysts’ workloads by automating data triage
- Careful analysis of volcano’s plumbing system may give tips on pending eruptions
- Reducing farm greenhouse gas emissions may plant the seed for a cooler planet
- Using artificial intelligence to detect discrimination
- Four ways scholars say we can cut the chances of nasty satellite data surprises
- Game theory shows why stigmatization may not make sense in modern society
- Older adults can serve communities as engines of everyday innovation
- Pig-Pen effect: Mixing skin oil and ozone can produce a personal pollution cloud
- Researchers find genes that could help create more resilient chickens
- Despite dire predictions, levels of social support remain steady in the U.S.
- For many, friends and family, not doctors, serve as a gateway to opioid misuse
- New algorithm may help people store more pictures, share videos faster
- Head named for Ken and Mary Alice Lindquist Department of Nuclear Engineering
- Scientific evidence boosts action for activists, decreases action for scientists
- People explore options, then selectively represent good options to make difficult decisions
- Map reveals that lynching extended far beyond the deep South
- Gravitational forces in protoplanetary disks push super-Earths close to stars
- Supercomputer cluster donation helps turn high school class into climate science research lab
- Believing machines can out-do people may fuel acceptance of self-driving cars
- People more likely to trust machines than humans with their private info
- IBM donates system to Penn State to advance AI research
- ICS Seed Grants to power projects that use AI, machine learning for common good
- Penn State Berks team advances to MVP Phase of Nittany AI Challenge
- Creepy computers or people partners? Working to make AI that enhances humanity
- Sky is clearing for using AI to probe weather variability
- ‘AI will see you now’: Panel to discuss the AI revolution in health and medicine
- Privacy law scholars must address potential for nasty satellite data surprises
- Researchers take aim at hackers trying to attack high-value AI models
- Girls, economically disadvantaged less likely to get parental urging to study computers
- Seed grants awarded to projects using Twitter data
- Researchers find features that shape mechanical force during protein synthesis
- A peek at living room decor suggests how decorations vary around the world
- Interactive websites may cause antismoking messages to backfire
- Changing how government assesses risk may ease fallout from extreme financial events
- Differences in genes’ geographic origin influence mitochondrial function
- Institute for CyberScience co-hire hunts security flaws in software
- ICS co-sponsors Health, Environment Seed Grant Program